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ABSTRACT. We present a systematic approach to the computation of exact nonreflecting

boundary conditions for the wave equation. In both two and three dimensions, the crit-

ical step in our analysis involves convolution with the inverse Laplace transform of the

logarithmic derivative of a Hankel function. The main technical result in this paper is

that the logarithmic derivative of the Hankel function H {

v

x

\z) of real order v can be ap-

proximated in the upper half z-plane with relative error £ by a rational function of degree

d ~ 0( log | v |

log
j + log

2
|v| + | v|

-1
log

2
as |i>| —> oo, £ —> 0, with slightly more

complicated bounds for v = 0. If A is the number of points used in the discretization

of a cylindrical (circular) boundary in two dimensions, then, assuming that £ < 1/A,

0(N logA log i) work is required at each time step. This is comparable to the work re-

quired for the Fourier transform on the boundary. In three dimensions, the cost is propor-

tional to A2 log
2 A +

A

2 logA log for a spherical boundary with A2
points, the first

term coming from the calculation of a spherical harmonic transform at each time step. In

short, nonreflecting boundary conditions can be imposed to any desired accuracy, at a cost

dominated by the interior grid work, which scales like A2
in two dimensions and A3

in

three dimensions.
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NONREFLECTING BOUNDARY KERNELS

1. Introduction

A longstanding practical issue in numerical wave propagation and scattering problems
concerns the reduction of an unbounded domain to a bounded domain by the imposition

of nonreflecting boundary conditions at an artificial boundary. We restrict our attention to

“time-domain” calculations, for which it is well-known that the exact nonreflecting condi-

tions are global in both space and time. While the problem has been widely studied (see

Givoli
[ 1 ]

for an overview), the boundary conditions used in practice typically introduce

serious numerical artifacts. The two most common approaches are based on the construc-

tion of local differential boundary conditions [2, 3] or absorbing regions [4, 5], but neither

provides a clear sequence of approximations which converge to the exact, nonlocal con-

ditions. Recently, Sofronov [6] and, independently, Grote and Keller [7] have developed

and implemented an integrodifferential approach for three-dimensional calculations using a

spherical boundary and have demonstrated that high accuracy can be achieved at reasonable

cost. In their schemes, the work is of the same order as the explicit finite difference or finite

element calculation in the interior of the domain. For TV
2
points on the spherical boundary,

0(TV J

)
work is required. Hagstrom and Hariharan [8] have shown that these conditions

can be effectively implemented using only local operators, but at the cost of introducing a

large number of auxiliary functions at the boundary. A somewhat more general, but closely

related, integral formulation is introduced in [9, 10]. The fundamental analytical tool in the

latter papers is what we refer to as the “nonreflecting boundary kernel” which is the inverse

Laplace transform of the logarithmic derivative of a Hankel function.

In this paper, we prove that the logarithmic derivative of a Hankel function can be ap-

proximated as a ratio ofpolynomials ofmodest degree, so that its inverse Laplace transform

can be expressed as a sum of exponentials. Our analytical approach combines an exten-

sion of the Mittag-Leffler theorem with the approximation techniques of the fast multipole

method. In particular, Theorem 4.
1
presents an exact representation of the logarithmic de-

rivative as a sum of poles plus a continuous density on the branch cut. Theorem 4.6, which

is preceded by several technical lemmas, presents a reduced, approximate representation.

Using this approach, the cost ofcomputing the nonreflecting boundary condition is com-

parable to that of a fast Fourier or spherical harmonic transform. For two-dimensional

problems, O (TV log TV log i) work is required at each time step, where TV is the number of

points used in the discretization of a cylindrical (circular) boundary. In three dimensions,

the cost is proportional to TV
2 log

2
TV + TV

2
log TV log j, for a spherical boundary with TV

2

points. The first term comes from the calculation of the spherical harmonic transform using

the fast algorithm of [1 1, 12].

Other authors, including Nedelec [13] and Cruz and Sesma [14], have studied the log-

arithmic derivative of the Hankel function, based on a variety of techniques. In this paper

we present a sum-of-poles representation for the logarithmic derivative of a Hankel func-

tion of real order v bounded away from zero with accuracy s for argument, z, satisfying

Im(z) > 0. The number ofpoles is bounded by 0[ log |v| -log
j -blog

2
|v|-Hv|

-1
log

2
j). A

similar representation for v = 0 is also derived which is valid for Im(z) >rj> 0 requiring

0( log
|

• log
j + log

j • log log
\ + log i

• log log i) poles.
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In Section 2, we introduce nonreflecting boundary kernels. In Section 3 we collect back-

ground material in a form convenient for the subsequent development. Section 4 contains

the analytical and approximate treatment of the logarithmic derivative, while a procedure

for computing these representations is presented in Section 5. The results of our numerical

computations are contained in Section 6, and we present our conclusions in Section 7.

2. Nonreflecting Boundary Kernels

Let us first consider the wave equation

u tt =c2 \'2 u (1)

in a two-dimensional annular domain po < p < p\. The general solution can be expressed

as

oo

u(p,<p,t)= e
in<t> C~ x

[an {s)Kn (ps/c) +bn (s) In (ps /c)](t), (2)

n=—oo

where Kn and In are modified Bessel functions (see, for example, [15] 9.6),

Kn (z) = ^in+l H^(zeni/2
), In (z ) = rnJn (ze

m/1
), -tt < argz < y, (3)

the coefficients an and bn are arbitrary functions analytic in the right half plane, C denotes

the Laplace transform

-j£

oo

C[f](s)= I
e~st

f (t) dt, (4)

and C 1 denotes the inverse Laplace transform

1 f
l0C

£-1
[g](0 = z— /

e
st
g(s)ds.

2m J—

i

oo
(5)

Likewise, for the wave equation in a three-dimensional domain ro < r < r\
,
the general

solution can be expressed as

oo n

u(r, 4>, 6, t) = ^ Ynm ((p,d)jC
1

n=— oo m=—n

Kn+,_(rs/c)

&nm (,S ) / -j—

y/rs/c

In+ i{rs/c)-\

(6 )

4" bnm (s)
y/rs/c

if).

Ifwe imagine that p = p\ (or r = r\) is to be used as a nonreflecting boundary, then we
can assume there are no sources in the exterior region and the coefficients bn is) (or bnm (s))

are zero. Let us now denote by u„(p, t

)

the function satisfying

C[u n ](p, s ) = a„(s) Kn(ps/c). (7)
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Then

^[^««](/>. s) = an (s )
•

S
- K'n {ps/c

)

= C[un ]tP ,s).(
S
-
K>s/c)

\\c Kn (ps/c))

(8 )

so that

—u n (p, t) = un (p , t)*£
dp

s_ K'n (ps/c)

c Kn (ps/c)_
(0 ,

where * denotes Laplace convolution

/'(f*g)(0= /
- z)dz.

(9 )

( 10)

The convolution kernel in (9) is a generalized function. Its singular part is easily removed,

however, by subtracting the first two terms of the asymptotic expansion

5 K'„(ps/c)
_

s 1
, ,

c Kn {ps/c) c 2p v >' 00 . ( 11 )

From the assumption un (p, t) = 0 for t < 0 and standard properties of the Laplace trans-

form we obtain the boundary condition

a 13 1—u„(p , t) + un (p , t ) + —un (p, t )
=

3p c 3r 2p
fo,
Jo

(t - t) un (p, z)dz ,

where

a„(0 = £-l £ J_ £^r'(p5/c)
(0,

( 12 )

(13)
_c 2p c Kn (ps Jc)

_

which we impose at p = p\

.

Remark. The solution to the wave equation in physical space is recovered on the nonre-

flecting boundary from u n by Fourier transformation:

N/2-\

u(p\,<j),t)= ^ Un (p\,t)e
in<p

, (14)

n=-N/2

assuming N points are used in the discretization.

The analogous boundary condition in three dimensions is expressed in terms of the func-

tions unm (r, t) satisfying

Kn+ l irs/c)

C[unm ]{r,s) = anm (s) -==—
. (15)

y/rs/c

After some algebraic manipulation, assuming unm (r, t) = 0 for t < 0, we have

a

Jr

i a i r
1

unm {r,t) + -—unm (r,t) + -unm {r,t) =
/

a)„(t - z) unm (r, z) dz,
cot r Jo

( 16 )
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where

ton (t) — C'
-1 5 1 5^+ .("A)-|-4

1

c 2r c Kn+ \_(rs/c)

_

(0, (17)

which we impose at r = r\

.

Note that the boundary conditions (12) and (16) are exact but nonlocal, since they rely on

a Fourier (or spherical harmonic) transformation in space, and are history dependent. The

form of the history is simple, however, and expressed, for each separate mode, in terms of

a convolution kernel which is the inverse Laplace transform of a function defined in terms

of the logarithmic derivative of a modified Bessel function

-7-I0gKv (z )

dz

K(z)

Kv {z)'
(18)

Remark. In three dimensions, the required logarithmic derivative of Kn+ \{z) is a ratio

of polynomials, so that one can recast the boundary condition in terms of a differential

operator of order n. The resulting expression would be equivalent to those derived by

Sofronov [6] and Grote and Keller [7].

The remainder of this paper is devoted to the approximation of the logarithmic deriva-

tives (1 8) as a ratio ofpolynomials of degree O (log v), from which the convolution kernels

on and <jon can be expressed as a sum of decaying exponentials. This representation allows

for the recursive evaluation of the integral operators in (12) and (16), using only O(\o>gn )

work per time step (see [16]). We note that, by Parseval’s equality, the Z 2 error resulting

from convolution with an approximate kernel is sharply bounded by the Zoo error in the

approximation to the kernel’s transform. Precisely, approximating the kernel B(t ) by the

kernel A(t) we find

A * u — B * u |L = II Au — Bu |L < sup
A - B

seiR
1 5

1

A-B
I

= sup —

—

s M B

Bu

B *u |L

(19)

where we assume that A, B, and u are all regular for Re(5) > 0. For finite times we may
let 5 have a positive real part, r]

:

\\A*u- B*u\
LA(!T)

<e,
<
T

sup l|£*»lL z (0.n-
(20)

serj+iR
|

D
|

We therefore concentrate our theoretical developments on Zoo approximations. For ease of

computation, however, we compute our rational representations by least squares methods.

These do generally lead to small relative errors in the maximum norm, as will be shown.
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Since Hankel functions are more commonly used in the special function literature, we
will write the logarithmic derivatives as

d
log Kv (z) = ~~ log {z e

7tl/2

)
= i

Hv
(1 )'/_7ri(zeni/2

)

dz Hi
])
(ze^/2

)

(21 )

We are, then, interested in approximating logarithmic derivative of the Hankel function on
and above the real axis.

3. Mathematical Preliminaries

In this section we collect several well-known facts concerning the Bessel equation, the

logarithmic derivative of the Hankel function, and pole expansions, in a form that will be

useful in the subsequent analytical development.

3.1. Bessel’s Equation. Bessel’s differential equation

,2d2u 1 du / y^\

dz2
(22 )

for y g R, has linearly independent solutions and //u
(2)

,
known as Hankel’s functions.

These can be expressed by the formulae

/*«(*) = (23)
r(1) ^

J. v {z) - e-™* Jv {z)

i sin(v7r)

where the Bessel function of the first kind is defined by

- 00
(-z2

/4)
k

i sin(v7r)

J" {Z) ^ §*!r(v + * + !)
(24)

The expressions in (23) are replaced by their limiting values for integer values of v. (See,

for example, [15, 9.1]) For general v, the functions //v
(1)

and //y
2)

have a branch point at

z = 0 and it is customary to place the corresponding branch cut on the negative real axis

and impose the restriction — tt < argz < ir. We shall find it more convenient, however, to

place the branch cut on the negative imaginary axis, with the restriction

71 3n-- < argz < —
. (25)

Hankel’s functions have especially simple asymptotic properties. In particular (see, for

example, [17, 7.4.1]),

> 7ZZ

-

Hl'hz) ~
( 7Tz'

Ak(v)

yk ’
(26)

k=

0

k=0

(27)
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as z —> oo, with — it + 8 < argz <2jt — 8, where

(4v2 - 1
2
)(4v

2 - 3
2
)

• •
• (4v2 - (2£ - l)

2
)

^A-(v) =
A'! 8*

and the branch of the square root is determined by

Finally we note the symmetry

z
l/2 _ e

{\og\z\+i argz)/2

(28)

(29)

= (30)

We also make use of the modified Bessel functions, Kv (z ) and Iv (z). These are linearly

independent solutions of the equation obtained from (22) by the transformation z -> iz.

Their Wronskian satisfies

Kv (z)I'v (z)
— K'

v
(z)Iv (z) = z~ l

. (31)

Moreover we have for positive r
[
1 8]

H^\re~in/1
)
= —e~vni/2

(e
v7tiKv {r) + 7ziIv (r)).

ni
(32)

Asymptotic expansions ofKv (r ) and Iv (r) for r small and large are also known [15, 9.6,

9.7]. For real r and v > 0 we have

Kv(r)

IV (T)

Kv {r)

Ur)

Y- log-, v = 0.

in©’-V(v+ 1)V2-

'-jz

1

2jzr
e
r

,

0,

0,

oo,

00 .

(33)

(34)

(35)

(36)

Here y = 0.5772 ... is the Euler constant.

Finally, we note the uniform expansions of Bessel functions for v -* oo given in [15]

For Hankel function and derivative we have

4£ \ i/4Ai(e27r//3 v2/3 ^)
H^(yz) ~ 2^

—
(y~Z~T2 ) ,1/3

H< iy
(vz)

4e~2ni^ / 4£ \-l/4Ai/

(e
2jn73 v2//3

£)

.2/3

as v —> oo, where we restrict z to |arg(z)| < jt/2 and define

2 3/2 . 1 + Vl - Z2 r
-c

7“ = log v 1 — z2
.

3 z

(37)

(38)

(39)
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Here, Ai(t) denotes the Airy function [15, 10.4]. Note that £ = 0 when z — 1. Large v

approximations of the modified Bessel functions for real arguments, r, are given by

Kv {yr) ~ J

where

zv
(! +r 2

)V4 ’

</>(r) = log

/v(vr)
s/2nv (i +/- 2

)

1/4
’ oo.

1 + Vl + r 2
+ vT+r 2

.

(40)

(41)

3.2. Hankel Function Logarithmic Derivative. We denote the logarithmic derivative of

H {

V
X)
by G„,

G v (z )
= log H^\z) = -

(~ }

dz Hf\z)
(42)

The following lemma states a few fundamental facts about G v that we will use below.

Lemma 3.1. Thefunction G v (z),for v e R satisfies theformulae

G- V (z ) = G v (z), (43 )

G v (ze
ni

) = G v (z)e
n
\

Tt Tt

< argz < —

,

(44)

G v (z) z->0, (45)

2 ° ~ 2

where z —\z
\

e~ l arg ~ A r/ze complex conjugate ofz. Asymptotic approximations to G v are

[\og(ze~ni/1 /2) + y)
1

z~ ] + 0(z), v = 0,

— |y |

z

—

1

+ 0(z2^~ l

), 0 < \v\ < 1,

-|u|z
_1 + O(zlogz), |v| = 1,

— |v| z
-1 + 0(z), \v\ > 1,

where y is the Euler constant,

k=0 * k=

0

where A/fi>) is defined in (28), and

2e~ni^ / 4£ \-i/2Ai'(e27n/3 v2/3 £)

oo, (46)

G v (vz)
V 1 /3z
&)

Ai(e27n /3 v2/3 £)

’ oo,

where £ is defined in (39). Furthermore, thefunction u v defined by

u v (z) = z G v (z)

satisfies the recurrence

(47)

(48)

u v (z) =
V - 1 - U — i

(z)

— V. (49)
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Im(z)

FIGURE 1 . Curve z(£ ) defined by (39) near which the scaled zeros of //„
(1 *

lie (see Lemma 3.2). The branch cut of is chosen (25) on the negative

imaginary axis.

Proof. Equations (43) and (44) and asymptotic expansion (45) follow immediately from

the definitions (23) through (25) of Jv and Hy . The asymptotic expansion (46) follows

from (26) and (27), while (47) is a consequence of (37) and (38). The recurrence (49) is

derived from standard Bessel recurrences [15, 9.1.27],

The zeros ofH 1

)

(z) are well characterized [15, 18]; they lie in the lower half z-plane near

the curve shown in Figure 1 obtained by transformation [19] of Bessel’s equation. In terms

of the asymptotic approximation (37), this curve corresponds to negative, real arguments

of the Airy function.

Lemma 3.2. The zeros h Vi \

,

h vg, • ofHy\z) in the sector —tz/2 < argz < 0 are given

by the asymptotic expansion

K«~vz(in) + 0(v-'),
„ = 1 ,.'.., LM/2 + l /4j,

uniformly in n, where is defined by the equation

Kn=e-^i\-^an .

(50)

(51)

z(£) is obtainedfrom inverting (39), and an is the nth negative zero ofAiryfunction Ai.

The zeros in the sector tz < argz < 3tz/2 are given by —h v \ , —h vg, In particular,

~ i; + e
-2,n/3

(v/2)
1/3

(-a,). (52)

where —a\ = 2.338

3.3. Pole Expansions. A set of poles in a finite region defines a function that is smooth

away from the region, with the smoothness increasing as the distance increases. This fact

leads to the following approximation related to the fast multipole method [20, 21].
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Lemma 3.3. Suppose that q 1 , . . . , qn are complex numbers and z \ , . .

.

numbers with \zj
|

< 1 for j — 1 , . .
. , n. Thefunction

n

/(z) = T,
7= 1

can be approximatedfor Re(z) = a > 1 by the m pole expansion

772 -1

gm(z) =
7=0

Yj

z — aP
'

where co = e
2jzi/!m

is a root ofunity and Yj Is defined by

J
772 — 1 72

Yj = — Y' 0)~Jl y^ qkZk, j = o, . .

.

, m - 1.

m f-r'
“

/=0 /t=l

77?c error o/the approximation is bounded by

2{cr + 1)

|/w-*,«|<
(a- _ 1)(a _ 1)2

if«i.

where

F(z) = £fiL,
jZ 1

Z Z
7

Proof We use the geometric series summation

^ = £
W—

1 y 772
|

+
z — o

2t=0

^Tr+l Z — V

to obtain

772— 1 i 72 772— 1

/(z) - g„ (z) = £ gj z/' - Y, vj
)

k=0 j= 1 7=0

, zn are complex

(53)

(54)

(55)

(56)

(57)

(58)

(59 )
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All m terms of the first summation vanish, due to the combination of (55) and the equality

°^k — m <$A-0- For the error term we obtain

and

n

^i z
i
m

j=\
z

n
I <ti

zj
m

E V7 -7 <y^ i7_i7_ < _
7 7 _• < ^

I 7 7 _• 1 7
1 |

•, /

r= l |1 ZjjZ7= 1
‘7

I
"

Izl

1^7

7 :

< l^±L±(l^Ll}M < ^±Ll Re(Y
\z\ (a - l) 2 1 + a 2

\qj\

{a - l)2 |z| V" 1 -Zj/z )

< I?/

1

a 2 + 1

{a - \)
2

\ - ZjEE a 2 + 1

(a- l )
2
|F(z)|,

1 y Y] \

m~ l VT Yj

1 Z — (x)j 1 4-i, z — co-l
7=0 7=0

= |gm(E)|.

(60)

(61)

Moreover, repeating the computations of (60), we find

\m\ <
a ' + 1

|F(z) |. (62)
(« - lr

Now the combination of (59) through (62) and the triangle inequality gives (56).

Inequality (56) remains valid if we assume instead that |zy
|

< b and Re(z) = ab > b, for

arbitrary b £ R, b > 0; this fact leads to the next two results whose proofs mimic that of

Lemma 3.3 and are omitted.

Lemma 3.4. Suppose n, p are positive integers, q \, ...
, qn are complex numbers, and

z\ , . . . , zn are complex numbers contained in disks D \ , . .
. , Dp ofradii r\ , . .

. , rp , cen-

tered at c \, . . . ,cp , respectively. Thefunction

n

f(z) = J2
7= 1

(63)

can be approximatedfor z satisfying Re(z — a) > ar
t > r

l for i = 1 , . . . , p by the m p
pole expansion

p w -i v .

.

gm(z) = TEZ 77y
frtjro z ~(ci+ n or)

(64)

where gij Is defined by

Yij iS*"" E. "-(A
2 )'

/=0 zkeDi\Ui-\

i = 1 , .

.

2 = 0,..

• ,p,

• , m - 1,
(65)
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with Ui = Uj<jDj. The error ofthe approximation is bounded by

where

\f{z) - gm (z)\ <
2(a 2 + 1) \F(z)\

(am - l)( fl - l)2
’ (66)

n

n2) = £
j=

l

(67)

Lemma 3.5. Suppose that the discrete poles ofLemma 3.4 are replaced with a density q
defined on a curve C with C C Up = D\ U • • • U Dp , specifically

/CO -I
q(0

dt;.

<cz-S

which isfinitefor z outside Up ,
and that gm is defined by (64) with yij defined by

m—\ n .

i = \, ... ,p,

j =0, ... ,m - l.

(68)

Yu = <»~il

f M—1^ (69)

with Ui = Uj<iDj. Then the bound (66) holds as before.

Lemma 3.3 enables us to approximate, with exponential convergence, a function defined

as a sum of poles. The fundamental assumption is that the region of interest be “separated”

from the pole locations. The notion of separation is effectively relaxed by covering the pole

locations with disks of varying size in an adaptive manner. In Lemmas 3.4 and 3.5, we use

this approach to derive our principal analytical result.

4. Rational Approximation of the Logarithmic Derivative

The logarithmic derivative of the Hankel function G v (z) approaches a constant as z

oo and is regular for finite z e C, except at z = 0, which is a branch point, and at the zeros

of //y
(1)

(z), all simple. We can therefore develop a representation for G v analogous to that

of the Mittag-Leffier theorem: the only addition is due to the branch cut on the negative

imaginary axis. It will be convenient to work with u v (z), for which approximations to be

introduced have simple error bounds.

Theorem 4.1. Thefunction u v (z) = z G v (z), where G v is definedfor v e R by (42) with

the branch cut defined by (25), is given by theformula

Nv

u v (z) = iz
i hv.n l

7 ^ 7 ~ h V'„
I*’

n=

1

i r°°

ni Jo

Im (u v {re
ni ^2

))

ir + z
dr (70)

for z e C not in {0, h v \. h vp , . .
. ,

h v ^v } and not on the negative imaginary axis. Here

h v,i, h v ,
2, . . . ,h V Nv

denote the zeros ofH^\z), which number Nv .
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Figure 2. Integration contour Cm ,
with inner circle radius 1/m and outer

radius m + 1

.

Proof. The case of the spherical Hankel function, where v = k + 1/2 for k e Z, is simple

and we consider it first. Here u v (z) is a ratio of polynomials in iz with real coefficients,

which is clear from the observation that u
1 /2 (2 ) = iz — 1/2 in combination with the recur-

rence (49). Hence

Ny

U v (z) = p(z ) +
av '"

,^ 7 - h Vt „n=

1

where p is a polynomial and ofv ,„ is the residue of u v at h VM ,

(Xv.n = lim (z h vn ) u v (z) — h vn

(71)

(72)

by THopitaTs rule. We see from (46) that

u v (z) ~ iz — - -(- 0(z
_1

), z —> 00
, (73)

whence

p(z) = iz-j. (74)

Noting that u v (iy) e E for y € 1R, and combining (71), (72), and (74), we obtain (70).

We now consider the case v ^ k + 1/2, k e Z, for which the origin is a branch point.

For m = 1, 2, . .
.

,

we define Cm to be the simple closed curve, shown in Figure 2, which

proceeds counterclockwise along the circle
]

of radius m + 1 centered at the origin from

argz = —7r/2 to 3jt/2, to the vertical segment z = rei7t1 ^2
,
r e [1/m, m + 1], to the

circle C„
7

of radius 1/m centered at the origin from argz = 3jt/2 to —n/2, to the vertical
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Figure 3. Plot of Re(w v (re
ni ^2

)), containing the zero crossing, and

Im(wy(re _jri//2
)), for v = 2 and r e [0, 3].

segment z = re ni ^2
,
back to the first circle. Since none of the zeros of H^

V)

lies on the

imaginary axis, Cm encloses them all if m is sufficiently large. For such m, and z e C
inside Cm with Hv(z) ^ 0, the residue theorem gives

i r u v (£)

27Ti Jcm s -Z

Nv

dt; = u v (z) +
n=

1

h

hv,n

v,n 2
(75)

We now consider the separate pieces of the contour Cm . For the circles C^1}
and C^ \ we

use the asymptotic expansion (73) about infinity and (45) about the origin to obtain

1

lim
w-+oo 2rci

dt; = iz - -, lim
2ni

d; = o. (76)

Now exploiting the symmetry u v {re
2ni ^2

) — u v (re
~ni /2

) from (44) for the vertical seg-

ments, we obtain

1

lim —
m->oc 2Tli

f Uv(t

' Jcm C
-

u v (K) i

-dt; =iz-- +
z I In

L
fm Jo

oo 2i\m{u v (re
711 Z2

))

(re
ni /2 — z)

which, when combined with (75), yields (70) and the theorem.

-ni/1 dr, (77)

The primary aim of this paper is to reduce the summation and integral of (70) to a similar

summation involving dramatically fewer terms. To do so, we restrict z to the upper half-

plane and settle for an approximation. Such a representation is possible, for the poles of u v

(zeros of //v
(1)

) lie entirely in the lower half-plane and do not cluster near the real axis. We
first examine the behavior of u v on the negative imaginary axis.

The qualitative behavior of u v on the branch cut is illustrated by the case of v = 2, shown

in Figure 3. The plot changes little with changing v, except for the sign of Im(w v (z)) and

the sharpness of its extremum.
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Lemma 4.2. For v e M, v k + 1/2, k e 1, the function u v (re~
ni/1

) is infinitely

differentiable on r e (0, oo) and has imaginary part satisfying thefollowingformulae:

\m(u v {re
711 /2

))

IT COS (VTZ)

cos2 (vir)K 2 (r) + (irlv (r) + sin(y^)ATv (r))
2 # 0, (78)

JTCOS(VTT)
2

|
U|

Im (u v (re~
m/2

))

4M-1 r(|y|)2

Im (u v (re~
7:i ^2

)) ~2cos(v7r)re~
2r

,

IT

(log(r/2) + y)
2 +7T 2

' v = 0,

v 0,

Im(u v (re
ni,2

j)

where (p is defined in (41).

COS(V7T)fr 2 + V2

cosh (2v 0(r/|y|)) + sin(| y |tt)
’

r —> 0,

r — oo,

M -> 00,

(79)

(80)

(81)

Proof Infinite differentiability of u v (z) follows from the observation that H {

h

X)
(z) 0 on

the negative imaginary axis. To derive (78) we recall (32) to obtain

Im(u v (re-*
i/2

))
=

r7r cosjvn ){Kv (r)rv (r) - A»/„(r))

cos2 (vir)K 2 (r) + {jt Iv {r) + sin(y7r)AT(r))“
(82)

then apply (31). The remaining formulas follow from the asymptotic forms of Kv (r) and

Iv (r ) for small and large r, and the uniform large v expansions given in (33) through (36)

and (40). Here we use the symmetry u- v = u v . Note that (79) is valid for r/ |v| —

>

0. The

approximation (81) is nonuniform for v % 2k — 1 /2 and irlv (r) + sm(vir)Kv (r) % 0.

Lemma 4.3. Given vo > 0 there exist constants Co and c\ such that,for all v e K, |y| > vq,

v k -f 1 /2, k e Z, and all z satisfying Im(z) > 0, thefunction

f(z) =
Im (u v (re

Z2
))

dr
ir + z

(83)

satisfies the bounds

cp

1 + M/M
< 1/00

1

<
Cl

1 + \z\/\v\-
(84)

Moreover, there exists 8 > 0 such thatfor all v e E, \v\ > yo, and e with 0 < e < 1/2,

f(z) admits an approximation g(z) that is a sum ofd < <5-(l + |y|
1

log(l/s)) -log(l/f)

poles, with

|/(z)-g(z)| <£• |/(z)|, (85)

provided Im(z) > 0.
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Proof. We assume v ^ k + 1/2 for integral k and begin by changing variables, r = |v| w,
so that

lm(u v (\v\we
m /2

))

iw + z/\v\
du) = ixz (w)dw. (86)

From the nonvanishing of fiz and its asymptotic behavior in w, it is clear that (84) holds

for |u| € (no, ui) and any fixed v\ > v0 - Using (81) for |u| large but bounded away from

2k — 1/2 for integral k, an application of Watson’s lemma to (83) focuses on the unique

positive zero, w*, of cp defined in (41). As the derivative of this function is positive, we
conclude

a cos(u7r)

iw* + z/\v \

’

(87)

where a is a function of w*, so that (84) clearly holds. However, as v 2k — 1/2, the

denominator on the right-hand side of (81) may nearly vanish at w* and the expansion

loses its uniformity. Setting cos(v7r) = r] in these cases, we see that the denominator has a

minimum which is bounded below by 0(r]
2
). Hence in an 0(|v|

-1
) neighborhood of the

minimum which includes w* we have

J Ah(w)
rj\v \y/\ + (w*)

2
1

I ds
iW*+z/\v\ J-y/\v\ VT + f

2 V2S2
(88 )

which by the change of variables 5 = rjz/ |v| is seen to satisfy the upper bound in (84)

uniformly in r]. As the rest of the integral is small, the upper bound holds.

We now move on to the approximation. For a positive integer m and a positive number

wo, we define intervals 7o = (0, wo), Ij =
(
2J
~

l wo , 2-^wo) for j = 1, . . . , m, and Im+ \
=

(2
m
wo, oo). Now

f(z) = fo(z) + f\ (z) + fl(z). (89)

where fo, f\, and fz are defined by the formulae

fo(z) = /xz (w)dw. /iz (w)dw.

(90)

We will now choose wo and m so that fo and fz can be ignored and then use Lemma 3.5

to approximate f\ . Using (79) and (81) and taking wq sufficiently small we have, for some

constant cz independent of v,

l/o(2) I

<
_C2 \v\_

(

3e 2lv
\

f
W0

1 + \z\/\v\ 4 Jo
w2M

~
] dw <

c2

1 + \z\
•(?“*)

2\v\

(91)

Hence, a choice of

WW), € -> 0,WQ = 0(8 (92)
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suffices to guarantee

l/oOOl < |l/(*)l, (93)

in the closed upper half-plane. Now using (80) and (81) and assuming m sufficiently large

we have, for some constant c3 independent of v.

l/2(2)| <

From (92), choosing

c3 |y|

1 + \z\/\v\ J2m wo

roo

J2m Wt

we
- i> u;dw <

C2

1 + \z\/\v

2mw0e-^
imw

\ (94)

m > mo + m\— log-,
M £

(95)

for appropriate m o and m i
independent of v and e leads to

I/2C0I < |l/(z)|. (96)

Finally, we apply Lemma 3.5 to the approximation of f\ The error involves the function

F\ — f |Im(w„)|/0> + z)dr, but we note that |Fi
|
= \f\

|. Using p poles for each j we
produce a p m-pole approximation g(z) with an error estimate, again for Im(z) > 0, given

by

1/iU) ~g(z)\ < 37TTl/i«l- (97)

A choice of

p = 0( logf), (98)

enforces

|/i(z) -g(z)l < ||/(z)|. (99)

By combining (93), (96), (99), and the triangle inequality, we obtain (85) with the number

of poles, d = p m, satisfying the stated bound.

The case v = 0 requires special treatment. First, the direct application of the preceding

arguments leads to a significantly larger upper bound on the number of poles. Secondly,

we note that «o(0) = 0, so that relative error bounds near z = 0 require a vanishing

absolute error. Finally, the lack of regularity of uq(z) at z = 0 precludes uniform rational

approximation, as discussed in [9]. Therefore, we relax the condition Im(z) > 0 to Im(z) >
rj > 0. By (20) this will lead to good approximate convolutions for times T < .

Lemma 4.4. There exists 8 > 0 such that for all s, 0 < s < 1 /2 and rj, 0 < rj < 1 /2,

the function f{z) = uq(z) — iz + 1/2 admits an approximation g(z) that is a sum of

d < 8 • ( log( I/77) + log log(l /sf) log(l/f) poles, with

\f(z)-g(z)\<£-\f(z)\.

provided Im(z) > 77.

( 100)
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Proof. Note that since w0(O has no poles, /(z) is given by (83), and satisfies (84). Define
intervals

/ = ((2
7_1 ~ 0*7. (2

y ~ 0*7) for j = 1 m, /m+1 = ((2
m - 1)77, 00).

Now

/(z) = /i(z) + /2 (z),

where /1 ,
and /2 are defined by the formulae

/i(0
_ f Im(up(rg ^ /2

))

y=i ^ ir + z
dr, f2 (z ) = /J Im+\

lm.{uQ{re ni l2
))

ir + z

001 )

dr. (102)

We will now choose m so that /2 can be ignored and then use Lemma 3.5 to approximate

/1 . Using (80) and assuming m sufficiently large we have, for some constant c,

»oo

1/2(01 <
1 + \z\ L

—2r 7
^

rg aid <
1 + \z\

2
m- l

ne-
2^

(103)

Hence, choosing

m > m 0 (log(l/O + loglog(l/g)), (104)

for appropriate mo independent of rj and s leads to

1/2(01 < |l/(OI- (105)

Finally, we apply Lemma 3.5 to the approximation of f\ . Using p poles for each j we
produce a p m -pole approximation g(z) with an error estimate for Im(z) > r] given by

|/l (z)-g(z) | < ^ryl/^OI- ( 106 )

A choice of

p = 0( log-), (107)
£

enforces

l/i (O -g(OI < | l/(OI- (108)

By (105), (108), and the triangle inequality, (100) is achieved with the number of poles,

d = p m, satisfying the stated bound.

We now consider the contribution of the poles.

Lemma 4.5. There exist constants Co, C\, 8 > 0 such thatfor all v, e e M with 2 < |v|

and 0 < e < 1/2 thefunction

h(z) =
n= 1

(109)
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where h vj, . .

.

,h v^v
are the roots ofH^ \ satisfies the inequalities

C\\v\ C2 I

,,,
< M*)\ < T—7 777 7 , (1 10)

1 -Hz|/|y| \ + \z\/\v\

and admits an approximation g(z ) that is a sum of

d

< <5 • log |v»| - log(l/£) poles, with

\h(z) — g(z)\ < s • \h(z)\ (111)

provided Im(z) > 0.

Proof The curve C defined in Lemma 3.2, near which h Vt i/|v|, . . . ,h v^v
/\v\ lie, is con-

tained in disks separated from the real axis. If we denote the disk of radius r centered at c

by D{r, c), then the disks

{£>(—Im(z), z)| z € C,
|

argz — jt/2| = jt/2 + n/2n
, « = 1,2, ...}, (112)

for example, contain C\{+1, —1}. From (52), the root h vj closest to the real axis satisfies

arg^v,i ~ ' ( 113 )

hence is contained in a disk of (112) with n ~ log2 (2
4/ 3 3' a\)

1

1 v

|

2/3
), and all

of the roots are contained in O (log |v|) of the disks. Now applying Lemma 3.4 we obtain

(111) with \h
\

replaced by \H\ —
\
J2 fiv.n |/(z — h VM )\. To obtain the upper bound in ( 1 1 0)

for both h and H we note first that it is trivial except for |z/v| ~ 1. A detailed analysis of

the roots as described by Lemma 3.2 shows that

|lm(A„j)| > c//3
|u|'/

3
. (114)

Hence, for |z/v| % 1,

E
h vj

z - h v ,

< C|v| 2/3 ^y _2/3 < 3C|y|.

j=

1

(115)

The lower bound in (1 10) is again obvious except for |z/v| ~ 1. Then, however, we note

that

h(z) = u v (z) — iz + 1/2 — /(z). (116)

Since, from (47), \u v {z)\ = 0(|y|
2/3

) for |z/v| ~ 1 and |/(z)| = 0(1) by (84) the right-

hand side is dominated by —iz and \h(z)\ = (9(|y|).

The combination of Theorem 4. 1 and Lemmas 4.3 and 4.5 suffices to prove our principal

analytical result.

Theorem 4.6. Given vo > 0 there exists 8 > 0 such that for all v e R, |v| > vo, and

0 < s < 1/2 there exists d with

d < <5( log | y |

• log(l/£) 4-log
2

|y| + |y|
_1

log
2
(l/^)). (117)
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and complex numbers a\, . .

.

,otd and ft, . . . , ft/, depending on v and e, such that the

function

Uv , e (z) = iz-^ + J2~- z
n= 1

z

approximates u v (z) with the bound

|

U v (z) - t/v>e (z)| < £ • |« v (z)|,

provided that Im(z) > 0. Furthermore

/ r 00’ X 1/2
/ r°° X 1/2

|m v (*) - £fte (.x)| dxj <£-lj \u v (x) - ix + \/2^dx\

Proof. We first note the lower bound

(118)

(119)

( 120)

\u v (z) -iz+ 1/2| >
C|V|

. (121)
l + |z|/|u|

For y > 0 the function is nonvanishing and has the correct asymptotic behavior, so we need

only consider the case of |v| large. The result then follows from (47). This proves (120)

and (119) with u v replaced by u v — iz + 1/2 on the right-hand side. From (47) we have

|

u v (z) - iz + 1 /2
1

< cjy|
1/3

|u„(z)|, (122)

so that the final result follows from the scaling s —^ |y|
1 /3 f.

The number of poles in (1 17) required to approximate u v (z) to a tolerance £, depends on

both £ and v. The asymptotic dependence on £ is proportional to |y|
-1

log
2
(l/f). We will

see in the numerical examples, however, that this term is important only for small |v|; oth-

erwise the dominant term is the first, for an asymptotic dependence of 0[ log
\

v\ -log(l/£)).

As we generally have £ M -1
in practice, the term log

2
|v| is of less importance.

Similarly, Lemma 4.4 leads to the following theorem for v = 0.

Theorem 4.7. There exists 8 > 0 such thatfor all £, 0 < £ < 1/2 and rj, 0 < r] < 1 /2

there exists d < <5-( log(l/?7
)-log(l/£)-)-loglog(l/£)-t-loglog(l / tj )) and complex numbers

a\ , . .
. , oid and ft , . . . , ft, depending on rj and £, such that thefunction

1
d

y0,,(2) = /z-- +T—

V

U23)
2 Z Pn

approximates uo(z) with the bound

|

Uq(z) - Uo,e(z)\ < £ • \uq(z)\. ( 124)
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provided that Im(z) > rj. Furthermore

oo
2 \

1/2

|w 0U + iri) - Uo,e(x + irj)\~dx
)

oo

< £

oo

—oo

\ 1/2

|tf vO + irj) - ix + Tj + \/l\
2
dx

)
. (125)

Proof. Again we already have (124) with uq{z) - iz + 1/2 on the right-hand side. By (45)

we find

|

uo(z) - iz + 1/2| < c\og(\/r])\u0 (z)\. (126)

The theorem follows from the scaling e —> log
-1

(1 /t])s.

As we must take rj = T -1
,
we see that the number of poles required may grow like

log(l Je) • log T + log T log log T. However, this is only for the mode n = 0 in the two

dimensional case. In short, the T dependence is insignificant in practice.

5. Computation of the Rational Representations

Analytical error bound estimates developed in the previous sections are based on max-

imum norm errors as in (19) and (20). In numerical computation it is often convenient,

however, to obtain least squares solutions. Our method of computing a rational function

Uv<£ that satisfies ( 1 1 9) is to enforce (120). An alternative approach would be to use rational

Chebyshev approximation as developed by Trefethen and Gutknecht [22, 23, 24].

In the numerical computations, we work with

u v (z) = u v (z) — iz + 1/2 (127)

and its sum-of-poles approximation UVt£ (z) = UVi£ (z) — iz + 1/2. In particular, we have

the nonlinear least squares problem

min
p.Q

Pix)

Q(x)
U V (x)

2

dx. (128)

for P, Q polynomials with deg(P) -I- 1 = deg(0 = d. Problem (128) is not only nonlin-

ear, but also very poorly conditioned when P, Q are represented in terms of their monomial

coefficients. We apply two tactics for coping with these difficulties: linearization and or-

thogonalization.

We linearize the problem by starting with a good estimate of Q ,
and updating P, Q

iteratively. In particular, we solve the linear least squares problem

min
p(i+\)Q{i+\)

p«+ 'Hx)

WF)
e (i+1)w - „

,

U V (X)

Q il) (x)

2

dx, (129)

where the integral is replaced by a quadrature. The initial values P (0)
, Q (0) are obtained by

exploiting the asymptotic expansion (46) and the recurrence (49). We find that two to three

iterations of (129) generally suffice.
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The quadrature for (129) is derived by first changing variables,

/

oo pTi/2 m

f{x)dx = / /(tan#) sec
2
6 d9 % iy,- /(tan#,) sec

2
#/, (130)

-oo J—n/2
z
_i

where #i , . .

.

,6m and iui . .

.

,wm denote appropriate quadrature nodes and weights. The
transformed integrand is periodic on the interval \—n/2, n/2], so the trapezoidal rule (or

midpoint rule) is an obvious candidate. The integrand is infinitely continously differen-

tiable, except at # = 0, where its regularity is of order 2|v|. For |v| >8 (say), the

trapezoidal rule delivers at least 16th-order convergence and is very effective. For small

|v|, however, a quadrature that adjusts for the complicated singularity at # = 0 is needed.

Here we can successively subdivide the interval near the singularity, applying high-order

quadratures on each subinterval (see, for example, [25]). We, instead, apply quadratures

designed to handle a variety of singularities efficiently [26].

The quadrature discretization of (129) cannot be solved as a least-squares problem by

standard techniques, due to its extremely poor conditioning. We avoid forming the corre-

sponding matrix; rather we solve the least squares problem by Gram-Schmidt orthogonal-

ization. The 2d + 1 functions

U y, 1, XU V , X , . .
. , x

d ]

u v , x
d

x
d
u v (131)

are orthogonalized under the real inner product

</.£>(=
/

r°° Re(/(x)g(x)) ^
-oo \Q

ii) (x)\
2

(132)

to obtain the orthogonal functions

U v (x), n = 1,

gn(x) = • 1, n = 2, (133)
, x v^ rnin{4,«

Xgn-2{X) - 2^=1
~ ]}

cnj gn-j(x), n = 3, ... ,2d+ 1,

where

{xgn— 2i gn—j)i
CnJ ~ i \

(gn—j ? gn—j)i

n = 3, . . . , 2d + 1,

7 = 1,--- , min{4, n - 1).
(134)

Now

g2d+\ = --P°'
+1) + u v Q ii+]

\ (135)

so and (2
(z+1)

are computed from the recurrence coefficients cnj by splitting (133)

into even and odd-numbered parts.

For some applications, including nonreflecting boundary kernels, it is convenient to rep-

resent P /Q as a sum of poles,

P(z)

Q(z) E <*n

Z ~ Pn‘
(136)
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We compute p\, ...
, fid (zeros of Q) by Newton iteration with zero suppression (see, for

example, [27]) by the formula

Aa+1) = Au) (137)

where , . .

.

, are the previously computed zeros of Q. Then cx\, . .

.

, ad are com-
puted by the formula an = P(Pn )/Q'(Pn)- The derivative Q'(z ) is obtained by differenti-

ating the recurrence (133).

6. Numerical Results

We have implemented the algorithm described in Section 5 to compute the representa-

tions of on and con through their Laplace transforms. Recall that for the cylinder kernels,

on ,
we have v — n while for the sphere kernels, con ,

we have v = n + 1/2. Table 1 presents

the sizes of the representations for s = 10
-6

,
10

-8
,
and 10“ 15

in (120). For the cylinder

kernels, which are affected by the branch cut, the number of poles for small n is higher

than for the sphere kernels. This discrepancy, however, rapidly vanishes as n increases and

the asymptotic performance ensues. The log(l/£) dependence of the number of poles for

n > 1 0 is clear.

For s = 10
-8 we have also computed the maximum norm relative errors which appear

in (19) by sampling on a fine mesh. For the cylinder kernel with n = 0, we expect an <9(1

)

error in a small interval about the origin due to (79). However, errors of less than e are

achieved for |s| > 5 x 10~ 7
. This implies a similar accuracy in the approximation of the

convolution for times of order 106 . For all other cases the maximum norm relative errors

are of order e.

Finally, Table 2 presents poles and coefficients for the cylinder kernels for n = 1 , . .

.

,4

and e = 10
-6

,
to allow comparison by a reader interested in repeating our calculations.

Note that the pole locations are written in terms of 5 = z/i. Extensive tables will be made
available on the Web at http : / /math . nist .

gov/mcsd/Staf f /BAlpert.

Remark. Our approximate representation of the nonreflecting boundary kernel could be

used to reduce the cost of the method introduced by Grote and Keller [7]. The differential

operators of degree n obtained in their derivation need only be replaced by the correspond-

ing differential operators of degree log n for any specified accuracy. It is interesting to note

that in the two-dimensional case, where the approach of [7] does not apply, the analysis

described above can be used to derive an integrodifferential formulation in the same spirit.

7. Summary

In this paper we have introduced new representations for the logarithmic derivative of a

Hankel function of real order, that scale in size as the logarithm of the order. An algorithm

to compute the representations was presented and our numerical results demonstrate that
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Table 1 . Number d of poles to represent the Laplace transform of nonre-

flecting boundary kernels on and con ,
for various values of s.

£ = 10~ 6

On COn

n d n d

o 26
£ = 10~ 15

1 9
On COn

2 6
n d n d

3-6 5 0-5 n
1 41

7-8 6 6-8 6
2 24

9- 12 7 9- 12 7
3 18

13- 19 8 13- 19 8
4 15

20-31 9 20-31 9
5 14

32-51 10 32-51 10
6 13

52-86 11 52-86 11
7-12 12

87- 147 12 87- 147 12
13- 14 13 0- 13 n

148-227 13 148-228 13
15- 16 14 14- 15 14

228-401 14 229-402 14
17-18 15 16-18 15

402- 728 15 403- 728 15
19—22 16 19-21 16

729-1024 16 729—1024 16
23-26 17 22-25 17

1 8 ic 'Jf) 1 8

£ = 10~ 8
A / J I

32-37
1 o

19

A\J— jU

31-36
1 o

19
on C

O

n 38-45 20 37-44 20
n d n d 46- 54 21 45-53 21

0 44 55-65 22 54- 65 22
1 15 66- 79 23 66- 79 23
2 9 80-97 24 80-96 24

3-8 7 0-7 n 98-118 25 97-118 25
9- 10 8 8- 10 8 119- 145 26 119- 144 26
11- 14 9 11- 14 9 146- 177 27 145- 176 27
15-20 10 15- 19 10 178-216 28 177-216 28
21-28 11 20-28 11 217-265 29 217-264 29
29-41 12 29-40 12 266- 324 30 265- 324 30
42-58 13 41-57 13 325- 397 31 325- 396 31
59- 84 14 58-83 14 398-486 32 397-485 32
85-123 15 84-123 15 487- 595 33 486- 594 33
124- 183 16 124- 183 16 596- 728 34 595- 727 34
184-275 17 184- 275 17 729- 890 35 728- 890 35
276-418 18 276—418 18 891-1024 36 891-1024 36
419-638 19 419-637 19

639-971 20 638-971 20

972-1024 21 972-1024 21

the new representations are modest in size for orders and accuracies likely to be of practical

interest.
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TABLE 2. Laplace transform of cylinder kernel on defined in (13), approx-

imated as a sum ofd poles, for n = 1, . .

.

, 4 and s = 10
-6

.

Pole Coefficient Pole Location

n d Re Im Re Im

1 9 -0.426478£ - 02 0.000000£ + 00 —0.368403£ +01 0.000000£ + 00

-0.416255£ -01 0.000000£ + 00 —0.205860£ +01 0.000000£ + 00

-0.122665£ +00 0.000000£ + 00 —0.1 18994£ +01 0.000000£ + 00

-0.143704£ + 00 0.000000£ + 00 —0.717570£ +00 0.000000£ + 00

-0.530662E - 01 0.000000£ + 00 —0.423506£ + 00 0.000000£ + 00

—0.863872E - 02 0.000000£ + 00 —0.2231 1 1£ + 00 0.000000£ + 00

—0.961472E - 03 0.000000£ + 00 —0.103710£ +00 0.000000£ + 00
—0.721 548£ -04 0.000000£ + 00 —0.409342£ - 01 0.000000£ + 00

-0.250102£ - 05 0.000000£ + 00 —0. 1 17 156£ — 01 0.000000£ + 00

2 6 0.218164£ -01 0.000000£ + 00 —0.333263£ + 01 - 0.000000£ + 00

0.860648£ + 00 0.000000£ + 00 —0.162945£ +01 0.000000£ + 00

-0.138934£ +01 0.162069£ +00 -0.125843£ +01 0.412637£ + 00

-0.138934£ +01 —0.162069£ +00 -0.125843£ + 01 -0.412637£ +00
0.209905E - 01 0.000000£ + 00 -0.612710£ +00 0.000000£ + 00

0.232032E - 03 0.000000£ + 00 —0.240327£ + 00 0.000000£ + 00

3 5 -0.179277£ +00 0.000000£ + 00 -0.309775£ +01 0.000000£ + 00

-0.168335£ +01 0.1291 1 1£ + 01 —0.167998£ + 01 0.130784£ +01
-0.168335£ + 01 —0.1291 1 1£ +01 -0.167998£ +01 —0.130784£ + 01

-0.816322£ +00 0.000000£ + 00 -0.187260£ +01 0.000000£ + 00

—0.126962£ — 01 0.000000£ + 00 —0.950854£ + 00 0.000000£ + 00

4 5 -0.197725£ +01 0.220886£ +01 —0.197861£ +01 0.220444£ +01
-0.197725£ +01 —0.220886£ +01 —0. 197861 £ + 01 —0.220444£ + 01

-0.219247£ +01 0.216535£ +01 —0.282304£ + 01 0.382237£ + 00

-0.219247£ +01 —0.216535£ + 01 -0.282304£ +01 —0.382237£ + 00

0.464435£ + 00 0.000000£ + 00 -0.201 159£ +01 0.000000£ + 00

The present motivation for this work is the numerical modeling of nonreflecting bound-

aries for the wave equation, discussed briefly here and in more detail in [16]. Maxwell’s

equations are also susceptible to similar treatment as outlined in [28]. The new represen-

tations enable the application of the exact nonreflecting boundary conditions, which are

global in space and time, to be computationally effective.
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